Re: MD Undeniable Facts

From: Scott R (
Date: Sat Apr 19 2003 - 04:06:58 BST

  • Next message: Scott R: "Re: MD Undeniable Facts"


    > What do you think of defining a philosphical axiom as a concept that
    > has to be accepted and used in the process of denying it?

    I would guess that you would get a lot of logical conundrums, but not a very
    useful philosophy.

    > What is, is.

    Let's see. Suppose I deny that what is, is. This implies that there is
    something that is, but is not. How about, "This statement is not". If it is,
    it is not. If it is not, well, I don't know what it is.

    Another question: how can I use this axiom. What can I substitute for the
    word "What". A unicorn?

    > Consciousness is the faculty of perceiving what is.

    Well, you have defined "consciousness" as "perception", now what is
    perception? But, I admit, I know how to use the word "perception" for the
    most part. So since last night I perceived a unicorn in my dreams, I can
    conclude that a unicorn is.

    > What is is possessed by identity.

    This one I just disagree with, since I assume it defines "possessed by
    identity" to be synonymous to "what is". However, I deem identity to exist
    only by virtue of difference, and vice versa (for which I appeal to the
    logic of contradictory identity, no less).

    Anyway, on whether an axiomatic philosophy is possible, I doubt it. The
    virtue of a mathematical axiomatic system is that there is no need to go
    outside the axioms for further explication. (Not true, actually, since one
    needs the "rules for using an axiomatic system" which somehow one "just
    knows", but let it go).

    The only way I could see doing something similar in philosophy is to also
    borrow from mathematics that virtue. Here, for example, are the Peano axioms
    for arithmetic, which establish how one is to use 'number', '0', and
    'successor of':

    0 is a number.
    If n is a number, then the successor of n is a number.
    For all n (n a number) 0 is not the successor of n.
    If the successor of n = the successor of m (n and m numbers) then n = m.
    If a property P holds for 0 and if for any n (n a number) if P holds for n
    then P holds for the successor of n, then P holds for all numbers.

    (Note, all the surrounding verbiage, e.g. If..then.., and "a property holds
    for..", etc. can all be put into the formalism of first order predicate
    calculus, which is presupposed here.)

    The point being that these axioms implicitly define 'number', '0', and
    'successor of', with no implication to or from anything outside the system.
    I don't know how to do that in philosophy, but if one did, I think one
    would be very deep in postmodern-land. In fact, in my pursuit of an "ironic
    metaphysics" I have sometimes pondered trying to incorporate this approach.
    But since it would require the logic of contradictory identity, and not
    first order predicate calculus, I suspect I am not going to get very far.

    - Scott

    MOQ.ORG -
    Mail Archives:
    Aug '98 - Oct '02 -
    Nov '02 Onward -
    MD Queries -

    To unsubscribe from moq_discuss follow the instructions at:

    This archive was generated by hypermail 2.1.5 : Sat Apr 19 2003 - 04:12:25 BST